一类基于波利亚分布的修正的Lupas-Durrmeyer型算子Some modified Lupas-Durrmeyer type operators based on Polya distribution
连博勇;蔡清波;
摘要(Abstract):
引入了一类基于波利亚分布的修正Lupas-Durrmeyer型算子,它具有常数保持与线性保持性质.利用连续模,光滑模,K-泛函,Lipschitz函数类,讨论了该算子的某些逼近性质,在区间[1/3,1/2]上该算子具有更好的收敛结果.最后还给出了该算子的Voronvskaya型渐近展开公式.
关键词(KeyWords): Lupas-Durrmeyer型算子;K-泛函;光滑模;Voronvskaya型渐近展开公式
基金项目(Foundation): 国家自然科学基金(11601266);; 福建省自然科学基金(2016J05017);; 2016年福建省高校杰出青年科研人才培育计划
作者(Authors): 连博勇;蔡清波;
参考文献(References):
- [1]Aral A,Gupta V.Direct estimates for Lupas-Durrmeyer operators[J].Filomat,2016,30(1):191-199.
- [2]Gupta V,Soybas D.Convergence of integral operators based on different distributions[J].Filomat,2016,30(8):2277-2287.
- [3]Neer T,Acu A M,Agrawal P N.B′ezier variant of genuine-durrmeyer type operators based on polya distribution[J].Carpathian J.Math.,2016,33(1):73-86.
- [4]Neer T,Agrawal P N.A genuine family of Bernstein-Durrmeyer type operators based on polya basis functions[J].Filomat,2017,31(9):2611-2623.
- [5]Agrawal P N,Ispir N,Kajla A.Approximation properties of Lupas-Kantorovich operators based on polya distribution[J].Rendiconti del Circolo Matematico di Palermo Series 2,2016,65(2):185-208.
- [6]King J P.Positive linear operators which preserve x2[J].Acta.Math.Hungar,2003,99(3):203-208.
- [7]Duman O,Ozarslan M A,Vecchia B D.Modified Szasz-Mirakjan-Kantorovich operators preserving linear functions[J].Turkish J.Math.,2009,33(2):151-158.
- [8]Deo N,Bhardwaj N.Some approximation results for Durrmeyer operators[J].Appl.Math.Comput.,2011,217(12):5531-5536.
- [9]Rempulska L,Tomczak K.On approximation of functions by certain operators preserving x2[J].Comment.Math.Univ.Carolin,2008,49(4):579-593.
- [10]Aral A,Gupta V,Agarwal R P.Applications of q-Calculus in Operator Theory[M].New York:Springer,2013.
- [11]蔡清波.一类修正的Durrmeyer型q-Baskakov算子的统计收敛性质[J].高校应用数学学报,2012,27(3):351-358.
- [12]邓雪莉,吴嘎日迪.关于Bernstein-Durrmeyer-B′ezier算子在Orlicz空间内的逼近[J].纯粹数学与应用数学,2015,31(3):307-317.
- [13]Devore R A,Lorentz G G.Construtive Approximation[M].Berlin:Springer-Verlag,1993.
- [14]Ditzian Z,Totik V.Moduli of Smoothness[M].New York:Springer-Verlag,1987.
扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享