一类耦合非线性Klein-Gordon方程组解的稳定集和不稳定集Stable and unstable sets for a nonlinear Klein-Gordon equations
张宏伟,呼青英
摘要(Abstract):
利用势井理论构造方程utt-Δu + u - | v| ρ+2 | u| ρu =0vtt-Δv + v - | u|ρ+2 | v|ρv =0的初边值问题的稳定集和不稳定集 .证明了当初值属于稳定集时 ,整体弱解存在 ,当初值在不稳定集时 ,解将爆破
关键词(KeyWords): 耦合Klein—Gordon方程组;势井;整体解;爆破
基金项目(Foundation): 国家自然科学基金 (10 0 710 74 )
作者(Author): 张宏伟,呼青英
参考文献(References):
- [1] SegalL.Nonlinear partial differential equations in quantum field theory[J].Proc.Symp.Appl.Math.A.M.S.1965,17:210~226.
- [2] JorgensK.NonlinearWaveEquations[M].University ofColorado,Department ofMathematics,1970.
- [3] MakhankovV.Dynamics of classical solutions in integrable systems[J].PhysicsReports,SectC,1978,35:1~128.
- [4] MirandaM MillaMedeirosL A.On the existence of global solutions of a coupled nonlinearKlein-GordonEquations[J].Funkc.Ekvac.1987,30:147~161.
- [5] SattingerD H.On global solutions of nonlinear hyperbolic equaions[J].Arch.RationalMech.Anal.1968,30:148~172.
- [6] TsutsumiM.On solutions of semilinear differential equations in aHilbert space[J].Math.Japon.1972,17:173~193