NA列与两两NQD列的L~p收敛性L~p convergence for NA random sequences and pairwise NQD random sequences
吴永锋;
摘要(Abstract):
设{Xn,n1}是NA列或两两NQD列,{ank;1≤k≤n,n∈N}是实数阵列.利用矩不等式和截尾方法,研究了sum from k=1 to n(ankXk)的Lp收敛性,所获结论推广和改进了前人的相应结果.
关键词(KeyWords): NA列;两两NQD列;Lp收敛性;一致可积
基金项目(Foundation): 安徽高校省级自然科研项目(KJ2008B15ZC);; 安徽省高校青年教师资助计划项目(2008jq1140)
作者(Authors): 吴永锋;
参考文献(References):
- [1]Lehmann E L.Some concepts of dependence[J].Ann.Math.Statist.,1966,37:1137-1153.
- [2]Joag-Dev K,Proschan F.Negative association of random variables with applications[J].Ann.Statist.,1983,11:286-295.
- [3]吴永锋.两两NQD列的Lp收敛性和完全收敛性[J].纯粹数学与应用数学,2008,24(3):605-609.
- [4]吴群英,王远清,伍艳春.NA阵列行和最大值的若干极限定理[J].应用概率统计,2006,22(2):56-62.
- [5]万成高.两两NQD列的大数定律和完全收敛性[J].应用数学学报,2005,28(2):253-261.
- [6]吴群英.两两NQD列的收敛性质[J].数学学报,2002,45(3):617-624.
- [7]Chandra T K.Uniform integrability in the Cesàro sence and the weak law of large numbers[J].Sankhya:the Indian Yournal of Statistics,1989,51(series A):309-317.
- [8]Ordónffez Cabrera M.Convergence of weighted sums of random variables and uniform integerbility concerning the weights[J].Collect Math.,1994,43:121-132.