算子方程AX-XA*=B的正解与实正解Positive and real-positive solutions of the operator equation AX-XA*=B
田学刚;王少英;
摘要(Abstract):
利用算子矩阵分块技巧和算子的广义逆,在A是幂等算子的情况下,给出了算子方程AX-XA*=B有正解和有实正解的充要条件,并给出了正解和实正解的通式。
关键词(KeyWords): 关幂等算子;正算子;算子方程;Moore-Penrose逆
基金项目(Foundation): 滨州学院青年项目(BZXYL1010,BZXYKJ0815)
作者(Authors): 田学刚;王少英;
参考文献(References):
- [1]Ben-Israel A,Greville T N E.Generalized Inverses:Theoryand Applications,seconded[M].Berlin:Springer,2003.
- [2]Kirrinnis P.Fast algorithms for the Sylvester equation AX-XBT=C[J].Theoret.Comput.Sci.,2001,259:623-638.
- [3]Lin Y Q.Minimal residual methods augmented with eigenvectors for solving Sylvester equations and gener-alized Sylvester equations[J].Applied Mathematics and Computation,2006,181(1):487-499.
- [4]Kaabi A,Kerayechiana A,Toutounian F.A new version of successive approximations method for solvingSylvester matrix equations[J].Applied Mathematics and Computation,2007,186(1):638-645.
- [5]Sorensen D C,Antoulas A C.The Sylvester equation and approximate balanced reduction[J].Linear AlgebraAppl,2002,351:671-700.
- [6]Du H K,Yao X Y,Deng C Y.Invertibility of linear combinations of two idempotents[J].Proceedings of theAmerican Mathematical Society,2005,134(5):1451-1457.
- [7]田学刚,王少英.算子方程AXB=C的解[J].山东大学学报:理学版,2010,45(6):74-80.