具有脉冲毒素投放和营养再生的恒化器模型A chemostat model with impulsive toxicant input and nutrient recycling
傅晓钒;张树文;
摘要(Abstract):
研究具有脉冲毒素投放和营养再生的恒化器模型.利用脉冲微分方程的比较定理和小扰动方法得到了边界周期解全局渐近稳定的充分条件,进而得到了系统持续生存的充分条件.结果表明毒素环境将会导致微生物种群的灭绝.
关键词(KeyWords): 脉冲毒素投放;营养再生;恒化器;持续生存
基金项目(Foundation): 福建省自然科学基金(2008J0199)
作者(Authors): 傅晓钒;张树文;
参考文献(References):
- [1]Laksmikantham V,Bainov D D.Theory of Impulsive Differential Equation[M].Singapore:World Science,1989.
- [2]Bainov D D,Simeonov P S.Impulsive Differential Equations:Periodic Solutions and Applications[M].London:Longman,1993.
- [3]张树文,张耘嘉,谭德君.具脉冲效应和Beddington-DeAnglis功能反应时滞周期捕食系统[J].纯粹数学与应用数学,2010,26(4):534-540.
- [4]Zhang Shuwen,Tan Dejun.Permanence in a food chain system with impulsive perturbations[J].Chaos,Solitions and Fractals,2009,40:392-406.
- [5]Li Shuping,Pei Yongzhen.Stability analysis for a single-species chemostat model with age structure andcontribution of population to resource[J].Math.Chem.,2010,47:111-122.
- [6]Teng Zhidong,Gao Rong.Global behaviors of Monod type chemostat model with nutrient recycling andimpulsive input[J].Math.Chem.,2010,47:276-294.
- [7]Jiao Jianjun,Ye Kaili,Chen Lansun.Dynamical analysis of a five-dimensioned chemostat model withimpulsive diffusion and pulse input environmental toxicant[J].Chaos,Solitions and Fractals,2011,44:17-27.