一些图的Mycielski图的均匀邻强边染色On equitable adjacent strong edge coloring of Mycielski graph of some graphs
马效敏;马刚;张忠辅;
摘要(Abstract):
如果图G的一个正常边染色满足相邻点的色集不同,且任意两种颜色所染边数目相差不超过1,则称为均匀邻强边染色,其所用最少染色数称为均匀邻强边色数.本文得到了路、圈、星和扇的Mycielski图的均匀邻强边色数.
关键词(KeyWords): Mycielski图;均匀邻强边染色;均匀邻强边色数
基金项目(Foundation): 国家自然科学基金(40301037);; 国家民委科研项目(05XB07);; 西北民族大学中青年科研基金(X2007-012)
作者(Authors): 马效敏;马刚;张忠辅;
参考文献(References):
- [1]Bazgan C,Harkat-Benhamdine A,Li H,et al.On the vertex-distinguishing proper edge-colorings of graphs[J].J.of Combin.Theory,Ser.B,1999,75:288-301.
- [2]Burris A C,Schelp R H.Vertex-distinguishing proper edge-colorings[J].J.of Graph.Theory,1997,26(2):73-82.
- [3]张忠辅,李敬文,陈祥恩,等.图的距离不大于β的任意两点可区别的边染色[J].数学学报,2006,49(3):703-708.
- [4]Zhang Z F,Liu L Z,Wang J F.Adjacent strong edge coloring of graphs[J].Applied Mathematics Letters,2002,15:623-626.
- [5]田双亮,李敬文,张忠辅.Pn2和Pnn1的均匀邻强边色数[J].数学的实践与认识,2006,36(3):244-248.
- [6]Sheng B,Li M Z,Liu L Z.On the equitable adjacent strong edge chromatic number of P2×Cn[J].Mathematics in Economics,2002,19(3):15-18.
- [7]马刚,张忠辅.若干图的倍图的均匀邻强边染色[J].纯粹数学与应用数学,2010,26(1):64-68.
- [8]马刚,张忠辅.若干倍图的邻点可区别均匀全染色[J].吉林大学学报:理学版,2009,47(6):1160-1164.
- [9]Chen X E,Zhang Z F,Yan J Z,et al.Adjacent-vertex-distinguishing Total Chromatic Numbers on Mycielski’s Graphs of Several Kinds of Particular Graphs[J].J.of Lanzhou University,2005,41(2):117-122.
- [10]Bondy J A,Murty U S R.Graph Theory with Applications[M].New York:The Macmillan Press Ltd,1976.