黎曼流形上广义Yamabe方程的多重解及对Emden-Fowler方程的应用(英文)Multiplicity of generalized Yamabe equations on Riemannian manifolds and applications to Emden-Fowler problems
廖芳芳;Heidarkhani Shapour;Afrouzi Ghasem A;Roudbari Sina Pourali;
摘要(Abstract):
运用变分方法和由Ricceri所建立的关于四个临界点的定理证明了黎曼流形上广义Yamabe方程的多重若揭的存在性.作为应用,考虑在无穷远处包含次线性项的Emden-Fowler方程.
关键词(KeyWords): 广义Yamabe方程;黎曼流形;变分方法;Emden-Fowler问题;临界点理论
基金项目(Foundation): 国家自然科学基金(11701375)
作者(Authors): 廖芳芳;Heidarkhani Shapour;Afrouzi Ghasem A;Roudbari Sina Pourali;
参考文献(References):
- [1] Aubin T. Nonlinear Analysis on Manifolds, Monge-Ampe′ere Equations, Grundlehren der Mathematischen Wissenschaften, in Fundamental Principles of Mathematical Sciences[M]. New York:Springer-Verlag, 1982.
- [2] Aubin T.E′quations diff′erentielles non lin′eaires et proble′eme de Yamabe concernant la courbure scalaire[J]. Math. Pures Appl. 1976,55:269-296.
- [3] Aubin T. Some Nonlinear Problems in Riemannian Geometry, in:Springer Monographs in Mathematics[M]. New York:Springer-Verlag, 1998.
- [4] Berger M. La g′eometrie m′etrique des vari′et′es Riemanniennes, in Elie Cartan et les Math′ematiques d′Aujourd′Hui′′[J], Ast′erisque, Soci′et′e Math′ematique de France, 1985,2:9-66.
- [5] Schoen R M. Conformal deformation of a Riemannian metric to constant scalar curvature[J]. J.Differential Geometry, 1984,20:479-495.
- [6] Yamabe H. On a deformation of Riemannian structures on compact manifolds[J]. Osaka J. Math.,1960,12:21-37.
- [7] Cotsiolis A, Iliopoulos D.E′quations elliptiques nonlin′eaires`a croissance de Sobolev sur-critique[J].Bull. Sci. Math., 1995,119:419-431.
- [8] Cotsiolis A, Iliopoulos D.E′quations elliptiques nonlin′eaires sur?n, Le probl′eme de Nirenberg[J].C.R. Acad. Sci. Paris, S′er. I Math., 1991,313:607-609.
- [9] Hebey E. Nonlinear Analysis on Manifolds:Sobolev Spaces and Inequalities[M]. New York:Springer-Verlag, 1999.
- [10] Kazdan J L, Warner F W. Scalar curvature and conformal deformation of Riemannian structure[J]. J. Differential Geometry, 1975,10:113-134.
- [11] Nirenberg L. On elliptic partial differential equations[J]. Ann. Scuola Norm. Sup. Pisa, 1959,13:115-162.
- [12] Lee J M, Parker T H. The Yamabe problem[J]. Bull. Amer. Math. Soc., 1987,17:37-91.
- [13] V′azquez J L, V′eron L. Solutions positives d′′equations elliptiques semi-lin′eaires sur des vari′et′es riemanniennes compactes[J]. C. R. Acad. Sci. Paris, S′er. I Math., 1991,312:811-815.
- [14] Krist′aly A, R?adulescu V. Sublinear eigenvalue problems on compact Riemannian manifolds with applications in Emden-Fowler equations[J]. Stu. Math., 2009,191:237-246.
- [15] Pucci P, Serrin J. Extensions of the mountain pass theorem[J]. J. Funct. Anal., 1984,59:185-210.
- [16] Krist′aly A, R?adulescu V, Varga Cs. Variational Principles in Mathematical Physics, Geometry, and Economics:Qualitative Analysis of Nonlinear Equations and Unilateral Problems, in:Encyclopedia of Mathematics and its Applications[M]. Cambridge:Cambridge University Press, 2010.
- [17] Ricceri B. Another four critical points theorem[J]. Nonlinear Anal. Convex Anal. Busan, 2011,3:163-171.
- [18] Ricceri B. A further refinement of a three critical points theorem[J]. Nonlinear Anal., 2011,74:7446-7454.
- [19] Breckner B E, Varga C. Multiple solutions of Dirichlet problems on the Sierpinski gasket[J]. J.Optim. Theory Appl., 2015,167:842-861.
- [20] Cammaroto F, Vilasi L. On a perturbed p(x)-Laplacian problem in bounded and unbounded domains[J]. J. Math. Anal. Appl., 2013,402:71-83.
- [21] Wang L, Zhang X, Fang H. Multiplicity of solutions for a class of quasilinear elliptic systems in Orlicz-Sobolev spaces[J]. Taiwanese J. Math., 2017,21:881-912.
扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享